On the genericity of maximum rank distance and Gabidulin codes
نویسندگان
چکیده
We consider linear rank-metric codes in Fqm . We show that the properties of being MRD (maximum rank distance) and non-Gabidulin are generic over the algebraic closure of the underlying field, which implies that over a large extension field a randomly chosen generator matrix generates an MRD and a non-Gabidulin code with high probability. Moreover, we give upper bounds on the respective probabilities in dependence on the extension degree m.
منابع مشابه
Generalised Twisted Gabidulin Codes
We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes.
متن کاملSkew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring
Reed-Solomon codes and Gabidulin codes have maximum Hamming distance and maximum rank distance, respectively. A general construction using skew polynomials, called skew Reed-Solomon codes, has already been introduced in the literature. In this work, we introduce a linearized version of such codes, called linearized Reed-Solomon codes. We prove that they have maximum sum-rank distance. Such dist...
متن کاملOn (Partial) Unit Memory Codes Based on Gabidulin Codes
Partial) Unit Memory ((P)UM) codes provide a powerful possibility to construct convolutional codes based on block codes in order to achieve a high decoding performance. In this contribution, a construction based on Gabidulin codes is considered. This construction requires a modified rank metric, the so–called sum rank metric. For the sum rank metric, the free rank distance, the extended row ran...
متن کاملNew criteria for MRD and Gabidulin codes and some Rank-Metric code constructions
Codes in the rank metric have been studied for the last four decades. For linear codes a Singleton-type bound can be derived for these codes. In analogy to MDS codes in the Hamming metric, we call rank-metric codes that achieve the Singleton-type bound MRD (maximum rank distance) codes. Since the works of Delsarte [3] and Gabidulin [4] we know that linear MRD codes exist for any set of paramete...
متن کاملDecoding of Block and Convolutional Codes in Rank Metric DISSERTATION
Rank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowadays...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 86 شماره
صفحات -
تاریخ انتشار 2018